

In the name of Allah, The Beneficent, The Merciful
Our vision is to develop confident well-mannered children who use their full potential and achieve their best. Children at our school will acquire the skills and knowledge required for them to live in modern Britain. Subsequently, they will become courteous, law abiding, proud and active citizens of a harmonious multi cultured society, drawing guidance from the Quran and the life of the Prophet (peace be upon him).

Assalamu Alaikum wa Rahmatullah

Thank you for taking time out to look through this guide for parents. This guide includes a wealth of information and we have put this together with the aim of keeping you informed of what we are teaching your children in school and how you can further support their learning at home.

Please note that we hold regular parent workshops which are very useful and give you practical strategies for helping your child.

We hope this guide is useful. If there is something you're not sure about, please do not hesitate to speak to us.

The following are covered in this guide:

- Curriculum content - As outlined in the government's Programmes of Study (core subjects)
- Curriculum content - As outlined in the government's Programmes of Study (foundation subjects)
- Curriculum maps (these are maps of the topics we will be teaching throughout the year)
- Helping your child read (a guide for parents)
- Phonics (a guide for parents)
- Recommended reading list - This is a list of age appropriate books we expect children to have read for each year group
- Helping your child with spelling (a guide for parents)
- Helping your child with writing (a guide for parents)
- Helping your child with maths (a guide for parents)
- Helping your child in the foundation subjects (a guide for parents)
- Knowledge organisers - These are a snapshot of what children have learnt for that particular topic. Currently, we have these for Science and Humanities.
- Staying healthy
- Tips for packed lunches
- Recommended websites
- School subscriptions - This is a list of subscriptions we use to aid the children's learning

All curriculum booklets and additional content can be found on our website: www.alameen.bham.sch.uk

Curriculum Content

Eng the beginning of Year 3, your child should be able to independently and accurately, read a range of
books. They should be able to understand words outside their normal everyday vocabulary.
The aim is for them to become independent, fluent and enthusiastic readers who read widely and
frequently with understanding and enjoyment.
Your child will also continue to develop across the different strands of writing: imagination and ideas,
audience and purpose, handwriting or typing, spelling, grammar, and punctuation.

Children will be taught to:

1 apply their growing knowledge of root words, prefixes and suffixes (etymology and morphology) as listed in English Appendix 1, both to read aloud and to understand the meaning of new words they meet
2 read further exception words, noting the unusual correspondences between spelling and sound, and where these occur in the word.

Children will be taught to:

1 develop positive attitudes to reading and understanding of what they read by:

- listening to and discussing a wide range of fiction, poetry, plays, non-fiction and reference books or textbooks
- reading books that are structured in different ways and reading for a range of purposes
- using dictionaries to check the meaning of words that they have read
- increasing their familiarity with a wide range of books, including fairy stories, myths and legends, and retelling some of these orally
identifying themes and conventions in a wide range of books
preparing poems and play scripts to read aloud and to perform, showing understanding through intonation, tone, volume and action
discussing words and phrases that capture the reader's interest and imagination recognising some different forms of poetry [for example, free verse, narrative poetry]
2 understand what they read, in books they can read independently, by:
- checking that the text makes sense to them, discussing their understanding and explaining the meaning of words in context
asking questions to improve their understanding of a text
drawing inferences such as inferring characters' feelings, thoughts and motives from their actions, and justifying inferences with evidence
- predicting what might happen from details stated and implied
- identifying main ideas drawn from more than one paragraph and summarising these identifying how language, structure, and presentation contribute to meaning
3 retrieve and record information from non-fiction
4
participate in discussion about both books that are read to them and those they can read for themselves, taking turns and listening to what others say.

Spelling

Children will be taught to:

1 use further prefixes and suffixes and understand how to add them (English Appendix 1) spell further homophones
spell words that are often misspelt (English Appendix 1)
place the possessive apostrophe accurately in words with regular plurals [for example, girls', boys'] and in words with irregular plurals [for example, children's]
5 use the first two or three letters of a word to check its spelling in a dictionary
write from memory simple sentences, dictated by the teacher, that include words and punctuation taught so far

Handwriting

1 use the diagonal and horizontal strokes that are needed to join letters and understand which letters, when adjacent to one another, are best left unjoined
2 increase the legibility, consistency and quality of their handwriting [for example, by ensuring that the downstrokes of letters are parallel and equidistant; that lines of writing are spaced sufficiently so that the ascenders and descenders of letters do not touch].

Children will be taught to:

1 plan their writing by:

- discussing writing similar to that which they are planning to write in order to understand and learn from its structure, vocabulary and grammar
0 discussing and recording ideas
2 draft and write by:
- composing and rehearsing sentences orally (including dialogue), progressively building a varied and rich vocabulary and an increasing range of sentence structures (English Appendix 2)
- organising paragraphs around a theme
- in narratives, creating settings, characters and plot
- in non-narrative material, using simple organisational devices [for example, headings and sub-headings]
3 evaluate and edit by:
- assessing the effectiveness of their own and others' writing and suggesting improvements
- proposing changes to grammar and vocabulary to improve consistency, including the accurate use of pronouns in sentences
4 proof-read for spelling and punctuation errors
5 read aloud their own writing, to a group or the whole class, using appropriate intonation and controlling the tone and volume so that the meaning is clear.

Children will be taught to:

1 develop their understanding of the concepts set out in English Appendix 2 by:

- extending the range of sentences with more than one clause by using a wider range of conjunctions, including when, if, because, although
- using the present perfect form of verbs in contrast to the past tense
- choosing nouns or pronouns appropriately for clarity and cohesion and to avoid repetition
- using conjunctions, adverbs and prepositions to express time and cause
- using fronted adverbials
- learning the grammar for years 3 and 4 in English Appendix 2

2 indicate grammatical and other features by:

- using commas after fronted adverbials
- indicating possession by using the possessive apostrophe with plural nouns
- using and punctuating direct speech

3 use and understand the grammatical terminology in English Appendix 2 accurately and appropriately when discussing their writing and reading.
VGP = Vocabulary, Punctuation and Grammar

	English - Appendix 2: Vocabulary, grammar and punctuation
Year 3: Detail of content to be introduced	
Word	Formation of nouns using a range of prefixes [for example super-, anti-, auto-] Use of the forms a or an according to whether the next word begins with a consonant or a vowel [for example, a rock, an open box] Word families based on common words, showing how words are related in form and meaning [for example, solve, solution, solver, dissolve, insoluble]
Sentence	Expressing time, place and cause using conjunctions [for example, when, before, after, while, so, because], adverbs [for example, then, next, soon, therefore], or prepositions [for example, before, after, during, in, because of]
Text	Introduction to paragraphs as a way to group related material Headings and sub- headings to aid presentation Use of the present perfect form of verbs instead of the simple past [for example, He has gone out to play contrasted with He went out to play]
Punctuation	Introduction to inverted commas to punctuate direct speech
Terminology	
for pupils	preposition, conjunction word family, prefix clause, subordinate clause direct speech consonant, consonant letter vowel, vowel letter inverted commas (or 'speech marks')

Year 3 and 4 Word List				
accident	consider	group	notice	regular
accidentally	continue	guard	occasion	reign
actual	decide	guide	occasionally	remember
actually	describe	heard	often	sentence
address	different	heart	opposite	separate
answer	difficult	height	ordinary	special
appear	disappear	history	particular	straight
arrive	early	imagine	peculiar	strange
believe	earth	increase	perhaps	strength
bicycle	eight	important	popular	suppose
breath	eighth	interest	position	surprise
breathe	enough	island	possess	therefore
build	exercise	knowledge	possession	though
busy	experience	learn	possible	although
business	experiment	length	potatoes	thought
calendar	extreme	library	pressure	through
caught	famous	material	probably	various
centre	favourite	medicine	promise	weight
century	February	mention	purpose	woman
certain	forward(s)	minute	quarter	women
circle	fruit	natural	question	
complete	grammar	naughty	recent	

Mathematics

The principal focus of mathematics teaching in Key Stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting, and place value. This should involve working with numerals, words, and the four operations, including with practical resources (for example, concrete objects and measuring tools).
At this stage, pupils should develop their ability to recognise, describe, draw, compare, and sort different shapes and use the related vocabulary. They will use a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time, and money.

Children will be taught to:

1 count from 0 in multiples of 4,8,50 and 100; find 10 or 100 more or less than a given number
recognise the place value of each digit in a three-digit number (hundreds, tens, ones)
compare and order numbers up to 1000
4 identify, represent and estimate numbers using different representations
read and write numbers up to 1000 in numerals and in words
6 solve number problems and practical problems involving these ideas.

Children will be taught to:

1 add and subtract numbers mentally, including:

- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds

2 add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
3 estimate the answer to a calculation and use inverse operations to check answers
4 solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

\square	Children will be taught to:	
	1	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
	2	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
	3	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Children will be taught to:	
	1	count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10
	2	recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators
	3	recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
	4	recognise and show, using diagrams, equivalent fractions with small denominators
	5	add and subtract fractions with the same denominator within one whole
	6	compare and order unit fractions, and fractions with the same denominators
	7	solve problems that involve all of the above.
	Children will be taught to:	
	1	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity ($1 / \mathrm{ml}$)
	2	measure the perimeter of simple 2-D shapes
	3	add and subtract amounts of money to give change, using both $£$ and p in practical contexts
	4	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks
	5	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight
	6	know the number of seconds in a minute and the number of days in each month, year and leap year
	7	compare durations of events [for example to calculate the time taken by particular events or tasks].
륭응\vdots00	Properties of shapes	
	Children will be taught to:	
	1	draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them
	2	recognise angles as a property of shape or a description of a turn
	3	identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle
	4	identify horizontal and vertical lines and pairs of perpendicular and parallel lines.
	Position and direction	
	Children will be taught to:	
	1	interpret and present data using bar charts, pictograms and tables
	2	solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.

Science

During years 3 and 4, pupils should be taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content:
\bigcirc
0
o making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers

- gathering, recording, classifying and presenting data in a variety of ways to help in answering questions
- recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables
- reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions
- using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions
- identifying differences, similarities or changes related to simple scientific ideas and processes
o using straightforward scientific evidence to answer questions or to support their findings.

Children will be taught to:

1 identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves and flowers
2 explore the requirements of plants for life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant
3 investigate the way in which water is transported within plants
4 explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal.

Children will be taught to:

1 identify that animals, including humans, need the right types and amount of nutrition, and that they cannot make their own food; they get nutrition from what they eat
2 identify that humans and some other animals have skeletons and muscles for support, protection and movement.

Children will be taught to:

1 compare and group together different kinds of rocks on the basis of their appearance and simple physical properties
2 describe in simple terms how fossils are formed when things that have lived are trapped within rock
3 recognise that soils are made from rocks and organic matter

Children will be taught to:

1 recognise that they need light in order to see things and that dark is the absence of light
2 notice that light is reflected from surfaces
3 recognise that light from the sun can be dangerous and that there are ways to protect their eyes
4 recognise that shadows are formed when the light from a light source is blocked by an opaque object
5 find patterns in the way that the size of shadows change.

Children will be taught to:

1 compare how things move on different surfaces
2 notice that some forces need contact between two objects, but magnetic forces can act at a distance
3 observe how magnets attract or repel each other and attract some materials and not others
4 compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials
5 describe magnets as having two poles
6 predict whether two magnets will attract or repel each other, depending on which poles are facing.

History at Key Stage 2
Pupils should continue to develop a chronologically secure knowledge and understanding of British, local and world history, establishing clear narratives within and across the periods they study. They should note connections, contrasts and trends over time and develop the appropriate use of historical terms. They should regularly address and sometimes devise historically valid questions about change, cause, similarity and difference, and significance. They should construct informed responses that involve thoughtful selection and organisation of relevant historical information. They should understand how our knowledge of the past is constructed from a range of sources.
In planning to ensure the progression described above through teaching the British, local and world history outlined below, teachers should combine overview and depth studies to help pupils understand both the long arc of development and the complexity of specific aspects of the content
Children will be taught about:
1 changes in Britain from the Stone Age to the Iron Age
the Roman Empire and its impact on Britain
3 Britain's settlement by Anglo-Saxons and Scots
4 the Viking and Anglo-Saxon struggle for the Kingdom of England to the time of Edward the Confessor
5 a local history study
6 a study of an aspect or theme in British history that extends pupils' chronological knowledge beyond 1066
7 the achievements of the earliest civilizations - an overview of where and when the first civilizations appeared and a depth study of one of the following: Ancient Sumer; The Indus Valley; Ancient Egypt; The Shang Dynasty of Ancient China
8 Ancient Greece - a study of Greek life and achievements and their influence on the western world
9 a non-European society that provides contrasts with British history - one study chosen from: early Islamic civilization, including a study of Baghdad c. AD 900; Mayan civilization c. AD 900; Benin (West Africa) c. AD 900-1300

Geography at Key Stage 2

Pupils should extend their knowledge and understanding beyond the local area to include the United Kingdom and Europe, North and South America. This will include the location and characteristics of a range of the world's most significant human and physical features. They should develop their use of geographical knowledge, understanding and skills to enhance their locational and place knowledge.

Children will be taught to:

Locational Knowledge
1 locate the world's countries, using maps to focus on Europe (including the location of Russia) and North and South America, concentrating on their environmental regions, key physical and human characteristics, countries, and major cities
2 name and locate counties and cities of the United Kingdom, geographical regions and their identifying human and physical characteristics, key topographical features (including hills, mountains, coasts and rivers), and land-use patterns; and understand how some of these aspects have changed over time
3 identify the position and significance of latitude, Iongitude, Equator, Northern Hemisphere, Southern Hemisphere, the Tropics of Cancer and Capricorn, Arctic and Antarctic Circle, the Prime/Greenwich Meridian and time zones (including day and night)

Place knowledge

1 understand geographical similarities and differences through the study of human and physical geography of a region of the United Kingdom, a region in a European country, and a region within North or South America
Human and physical geography
1 describe and understand key aspects of:
a physical geography, including: climate zones, biomes and vegetation belts, rivers, mountains, volcanoes and earthquakes, and the water cycle
b human geography, including: types of settlement and land use, economic activity including trade links, and the distribution of natural resources including energy, food, minerals and water

Geographical skills and fieldwork

1 use maps, atlases, globes and digital/computer mapping to locate countries and describe features studied
2 use the eight points of a compass, four and six-figure grid references, symbols and key (including the use of Ordnance Survey maps) to build their knowledge of the United Kingdom and the wider world
3 use fieldwork to observe, measure, record and present the human and physical features in the local area using a range of methods, including sketch maps, plans and graphs, and digital technologies.

PE at Key Stage 2

Pupils should continue to apply and develop a broader range of skills, learning how to use them in different ways and to link them to make actions and sequences of movement. They should enjoy communicating, collaborating and competing with each other. They should develop an understanding of how to improve in different physical activities and sports and learn how to evaluate and recognise their own success.

Children will be taught about:

1 use running, jumping, throwing and catching in isolation and in combination
2 play competitive games, modified where appropriate [for example, badminton, basketball, cricket, football, hockey, netball, rounders and tennis], and apply basic principles suitable for attacking and defending gymnastics]
4 perform dances using a range of movement patterns
5 take part in outdoor and adventurous activity challenges both individually and within a team
6 compare their performances with previous ones and demonstrate improvement to achieve their personal best.

Pupils should be taught to develop their techniques, including their control and their use of materials, with creativity, experimentation and an increasing awareness of different kinds of art, craft and design.

Children will be taught:

1 to create sketch books to record their observations and use them to review and revisit ideas
2 to improve their mastery of art and design techniques, including drawing, painting and sculpture with a range of materials [for example, pencil, charcoal, paint, clay]
3 about great artists, architects and designers in history

Computing at Key Stage 2

A high-quality computing education equips pupils to use computational thinking and creativity to understand and change the world. Computing has deep links with mathematics, science, and design and technology, and provides insights into both natural and artificial systems. The core of computing is computer science, in which pupils are taught the principles of information and computation, how digital systems work, and how to put this knowledge to use through programming. Building on this knowledge and understanding, pupils are equipped to use information technology to create programs, systems and a range of content. Computing also ensures that pupils become digitally literate - able to use, and express themselves and develop their ideas through, information and communication technology - at a level suitable for the future workplace and as active participants in a digital world.

Children will be taught to:

1 design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts
2 use sequence, selection, and repetition in programs; work with variables and various forms of input and output
3 use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs
4 understand computer networks including the internet; how they can provide multiple services, such as the world wide web; and the opportunities they offer for communication and collaboration
5 use search technologies effectively, appreciate how results are selected and ranked, and be discerning in evaluating digital content
6 select, use and combine a variety of software (including internet services) on a range of digital devices to design and create a range of programs, systems and content that accomplish given goals, including collecting, analysing, evaluating and presenting data and information
7 use technology safely, respectfully and responsibly; recognise acceptable/unacceptable behaviour; identify a range of ways to report concerns about content and contact.

Help your child with Reading

I SPY

Ask Questions

Play 'I Spy' games. Can you find words beginning with...? Can you find a picture ofa...? How many ... can you see?

Make it Fun

Enjoy reading together. Give characters funny voicesand engagewith the pictures. Make a game out of finding words that rhyme or start with the same sound.

Create

Use reading to inspire drawings or new stories.

Ask questions about the story as you read it, e.g. What is the story about? Why do you think they made that choice? Was it a good choice? Why did that happen? What do you think will happen next? What was your favourite part of the story? Why?

Be Seen

Make sure you are seen reading. Keep books magazines at easy reach.

Go Online

Look online \& in app stores for appropriate word \& spelling games.

Get Out

Go to your public library regularly. Find the books you loved as a kid to read together.

Make Space

Have a special place or a certain time when you read together.

Read everything out loud

Books, poems, nursery rhymes, newspaper \& magazine articles, food labels...

anything that is close to hand!

All children will take two books home to read each week. One will be based on their book band as illustrated in this chart. The other will be a book they have chosen from the school library.

Children also take home reading logs and are expected to read every day for $10-15$ minutes to a parent or older sibling. We request parents to make a note in their child's reading log after listening to them read.

Children will also have guided reading sessions as they progress through their grasp of phonics and will listen to their teacher read to them during storytime.

We have developed recommended reading lists for all children in our school and the list for year 3 is included below. Please work with your child and aim for them to complete reading all of the books in this list by the end of year 3 .

Year group	Age	Oxford Level	Book Band
Nursery	Up to 4 years old	1	Lilac
		$\frac{1+}{1}$	Pink
Reception / Primary 1	4-5 years old	1	Lilac
		$1+$	Pink
		2	Red
		3	Yellow
Year 1 / Primary 2	5-6 years old	4	Light blue
		5	Green
		6	Orange
Year 2 / Primary 3	6-7 years old	7	Turquoise
		8	Purple
		9	Gold
		10	White
		11	Lime
		12	Lime +
Year 3 / Primary 4	7-8 years old	8	Brown
		9	
		10	
		11	
		12	Grey
		13	
Year 4 / Primary 5	8-9 years old	14	
		15	Dark blue
		16	
Year 5 / Primary 6	9-10 years old	17	Dark red
Year 6/ Primary 7	10-11 years old	18	
		19	
		20	

Help your child with Spelling

At Al Ameen, we use the Read Write Inc scheme to develop children's spelling skills.

Spelling Games to play at home

Encourage your child to 'have a go' at spelling a new word
Making a first attempt is good for confidence, and it can reinforce spelling patterns and help identify problem areas.

Make sure they remember to use their phonics as they try to spell a word
Encouraging children to break the word they want to spell into its individual sounds and then try to match those sounds to the letters of the alphabet is really important. The chances are these have been painstakingly taught at school in KS1, and for older children it's about making sure they keep this skill fresh.
Reminding children to segment 'catch' into its three sounds - 'c' 'a' 'tch' - sounds like such a basic way of supporting spelling, but practising it is so important.

Ask them to write down the words that they need to remember how to spell

The physical act of writing the words by hand helps to anchor the spelling in children's memories and encourages them to think about the letters that represent the sounds in the word. You just don't get the same benefits if children type the words into a PC or tablet.

Hidden words is a game that you can prepare yourself

Write the words on your child's spelling list, hidden in a series of letters. Now that they are hidden, ask your child to find them. For example:
sfhplayknc - play | qrubitpdh - bit | nvzbikejfa - bike
Your child could circle the hidden words with coloured pens. To raise the challenge, you could set a time limit on the game. For example, how many words can you find in one minute?

Making silly sentences can be great fun

Challenge your child to write a silly sentence, including as many of the words on their spelling list as possible. For example, your child may have to learn 'room, took, hoop, foot, book'. They could make up a silly sentence such as 'The boy took his book across the room but got his foot caught in a hoop'. Again they could draw illustrations to go with the sentences.

Remind them to read through their writing and check for spelling errors

They need to develop a feel for whether a word looks right. They could underline words they are not sure of and then you could both check with a dictionary.

'Over-pronunciation' is a great spelling strategy

So for 'Wednesday' encourage children to say 'Wed-nes-day' as they write. There are lots of words which feature sounds that aren't always pronounced clearly (such as words ending in -ed), so asking children to over-pronounce these when spelling can also be useful (for example, teaching children to say 'hopped' or 'skipped' instead of 'jumpt' can be a huge help).

Few resources are more motivating than a highlighter pen for primary-aged children

 You can focus children's attention on the tricky bits in a word by asking them to highlight them. For example, show them that receive has 'ei' in the middle and ask them to write the word, and then highlight or underline this part to help them remember.

Help your child with Writing

Writing is a key skill that is used in all areas of the curriculum and the breadth of our curriculum ensures that pupils make links across all areas and subjects, writing a range of genres using subject-specific vocabulary to enhance their writing and engage their reader. Through cross-curricular writing, the skills taught in English lessons are transferred into other subjects, showing consolidation of skills and a deeper understanding of how and when to use specific grammar, punctuation and grammar objectives.

Writing is taught in daily English lessons through units that are planned around high-quality texts. We teach English as whole class lessons, so that all children have access to the age-related skills and knowledge contained in the National Curriculum. Through differentiated quality first teaching, all pupils receive the support they need in order to make good progress, to be confident and to be able to enjoy writing. Those working above age related expectations are given opportunities to extend their writing in a variety of ways, such as being given a choice of tasks in order to write effectively for a range of audiences and purposes, having a deeper understanding of the impact their writing has on the reader, selecting the appropriate form and drawing independently on what they have read as models for their own writing; showing greater control in their writing, exercising an assured and conscious control over levels of formality, particularly through manipulating grammar and vocabulary to achieve this; and to use the range of punctuation taught at Key Stage Two correctly and, when necessary, to use such punctuation precisely to enhance meaning and avoid ambiguity.

Children are given adequate time to plan and edit their work. Teachers use high quality texts, full of rich vocabulary, to immerse the children in their learning and their writing builds on the knowledge that they have of the world around them. Teachers plan real life reasons for writing; tasks are meaningful and the children write for purpose, carefully considering the audience of and the purpose for their writing. Grammar is taught through the language used by the author in the class text. Class teachers model high quality writing, editing and proofreading, and use whole class writing to support all pupils. Teachers demonstrate the high expectations they have of all pupils. They recognise that good writing stems from reading and they place a high value on books and reading, regularly demonstrating the link between reading and writing. Children working above age-related expectations are able to draw independently on their own reading as a model for their writing.

Writing is celebrated throughout the school and we have whole-school writing events, including participation in school and nationwide competitions.

Help your child with Maths

Years 3 and 4 (lower Key Stage 2) share the same curriculum targets.
In lower Key Stage 2, the principal focus of maths teaching is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.
At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Pupils will also draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can accurately use measuring instruments and make connections between measure and number.
By the end of Year 4, pupils should have memorised their times tables up to and including the 12 times table, and they will show precision and fluency in their work. Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

Year 3 Maths activity games

Boards games to help with maths skills:

Snakes and Ladders
Connect 4
Ludo Bingo

Shape

You could take your child on a 'shape walk' around an area to see what shapes they can spot. Look at the buildings to spot right angles and symmetrical shapes. Can they identify any irregular shapes by counting the numbers of sides?

Money

Receiving (and spending!) pocket money can make children very keen learners in this area! Put them in charge of a small part of the shopping list at the supermarket and give them a budget they must not go over. This will encourage them to:

- Recognise all coins and notes
- Total and write amounts up to $£ 10$ using $£$ and p
- Work out change that should be given.

Time

Make sure that there are both traditional and digital clocks around the house for your child to practise reading the time to 5 minute intervals. Ask them to be 'human alarm clocks' and to let you know when the oven needs turning off at 20 past 6 . A watch is a great present at this time if they haven't got one. Encourage your child to solve problems involving time e.g. this programme starts at 12.20 and it is 50 minutes long. What time will it finish?

Measures

Cooking is a great way for your child to practise weighing and measuring in grams and kilograms. It's a terrific way to learn to accurately read scales and measure out capacities in litres and centilitres.

Multiplication tables

Helping your child to learn multiplication facts and regularly going over them will benefit them enormously. They should learn to recite them in order as well as give 'quickfire' answers when they are jumbled up (e.g. "What are seven four's?", "How many six's make 42?"). This can be done on car journeys or whenever there is a spare 5 minutes.

By the end of Year 3, it is hoped that your child will know their 2, 5, 10, 3, 4 and 6 times tables.

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.
Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.
By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 . Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.
Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2 - and 3 -digit numbers by a single digit.
Children develop column methods to support multiplications in these cases. For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300, 120 and 3 , as these can be divided by 3 using known facts.
Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside.
in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1. Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100, and also with place value.

	Concrete	Pictorial	Abstract
Year 3 Addition			
Understan ding 100s	Understand the cardinality of 100 , and the link with 10 tens. Use cubes to place into groups of 10 tens. -:••••••• 10 :-: : : : : (3) 핸 훌 (9) 40 - - 7 为 70 (9) 9 (7) 9 雨 9 (7) 100	Unitise 100 and count in steps of 100 .	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0 .
Understan ding place value to 1,000	Unitise $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s to build 3-digit numbers.	Use equipment to represent numbers to 1,000 . Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.
Adding 100s	Use known facts and unitising to add multiples of 100. $3+2=5$ 3 hundreds +2 hundreds $=$ 5 hundreds $300+200=500$	Use known facts and unitising to add multiples of 100. $3+4=7$ 3 hundreds +4 hundreds $=$ 7 hundreds $300+400=700$	Use known facts and unitising to add multiples of 100. Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$

3－digit number＋ 1s，no exchange or bridging	Use number bonds to add the 1 s ． $214+4=?$ Now there are $4+4$ ones in total． $4+4=8$ $214+4=218$	Use number bonds to add the 1 s ． $\begin{aligned} & \text { Use number } \\ & \text { bonds to add } \end{aligned}$ the ls． $5+4=9$ $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	Understand the link with counting on． $245+4$ Use number bonds to add the is and understand that this is more efficient and less prone to error． $245+4=?$ I will add the 1 s ． $\begin{aligned} & 5+4=9 \\ & \text { So, } 245+4=249 \end{aligned}$
3－digit number＋ 1s with exchange	Understand that when the 1 s sum to 10 or more，this requires an exchange of 10 ones for 1 ten． Children should explore this using unitised objects or physical apparatus．	Exchange 10 ones for 1 ten where needed．Use a place value grid to support the understanding． $135+7=142$	Understand how to bridge by partitioning to the 1 s to make the next 10. $\begin{aligned} & 135+7=? \\ & 135+5+2=142 \end{aligned}$ Ensure that children understand how to add 1s bridging a 100 ． $\begin{aligned} & 198+5=? \\ & 198+2+3=203 \end{aligned}$
3－digit number＋ 10s，no exchange	Calculate mentally by forming the number bond for the 10 s．	Calculate mentally by forming the number bond for the 10 s ． $351+30=?$	Calculate mentally by forming the number bond for the 10 s ． $753+40$

	There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	$\begin{aligned} & 5 \text { tens }+3 \text { tens }=8 \text { tens } \\ & 351+30=381 \end{aligned}$	I know that $5+4=9$ So, $\begin{aligned} & 50+40=90 \\ & 753+40=793 \end{aligned}$
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred.	Add by exchanging 10 tens for 1 hundred. $184+20=?$ $184+20=204$	Understand how the addition relates to counting on in 10s across 100. $184+20=?$ I can count in 10s ... 194 ... 204 $184+20=204$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$
3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$ Use this to decide if any exchange is required.	Represent the required exchange on a place value grid using equipment. $275+16=?$	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation.

	There are 5 tens and 7 tens. That is 12 tens so I will exchange.	$275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	
3-digit number + 3-digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. $326+541$ is represented as:	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.
3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation.

	I will exchange 10 ones for 1 ten.		$126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?
Representi ng addition problems, and selecting appropriat e methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems.$275+99=?$274 275 99$275+99=374$	Use representations to support choices of appropriate methods. I will add 100, then subtract 1 to find the solution. $128+105+83=?$ I need to add three numbers.
Year 3 Subtraction			
Subtractin g 100s	Use known facts and unitising to subtract multiples of 100 . $5-2=3$	Use known facts and unitising to subtract multiples of 100 . $\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$	Understand the link with counting back in 100s. Use known facts and unitising as efficient and accurate methods.

	$500-200=300$		I know that $7-4=3$. Therefore, I know that 700 $-400=300$.
3-digit number 1s, no exchange	Use number bonds to subtract the 1 s . $214-3=?$ $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	Use number bonds to subtract the 1 s . $319-4=?$ $\begin{aligned} & 9-4=5 \\ & 319-4=315 \end{aligned}$	Understand the link with counting back using a number line. Use known number bonds to calculate mentally. $476-4=?$ $\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$
3-digit number 1s, exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged. Use place value equipment.	Represent the required exchange on a place value grid. $151-6=?$	Calculate mentally by using known bonds. $151-6=?$ $151-1-5=145$
3-digit number 10s, no exchange	Subtract the 10s using known bonds. $381-10=?$ 8 tens with 1 removed is 7 tens. $381-10=371$	Subtract the 10s using known bonds. $\begin{aligned} & 8 \text { tens }-1 \text { ten }=7 \text { tens } \\ & 381-10=371 \end{aligned}$	Use known bonds to subtract the 10 s mentally. $\begin{aligned} & 372-50=? \\ & 70-50=20 \end{aligned}$ So, $372-50=322$

	 I can see 3 groups of 8 . I can see 8 groups of 3 .		
Using commutati vity to support understand ing of the timestables	Understand how to use times-tables facts flexibly. There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7 . I know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.
Understan ding and using $\times 3$, $\times 2, \times 4$ and $\times 8$ tables.	Children learn the timestables as 'groups of', but apply their knowledge of commutativity. I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$
Using known facts to multiply 10s, for example 3×40	Explore the relationship between known timestables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens.	Understand how unitising 10s supports multiplying by multiples of 10 .	Understand how to use known times-tables to multiply multiples of 10 .

	 What is the same? What is different?	4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	$\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$
Multiplying a 2-digit number by a 1-digit number	Understand how to link partitioning a 2 -digit number with multiplying. Each person has 23 flowers. Each person has 2 tens and 3 ones. There are 3 groups of 2 tens. There are 3 groups of 3 ones. Use place value equipment to model the multiplication context. There are 3 groups of 3 ones. There are 3 groups of 2 tens.	Use place value to support how partitioning is linked with multiplying by a 2-digit number. $3 \times 24=?$ $3 \times 4=12$ $\begin{aligned} & 3 \times 20=60 \\ & 60+12=72 \\ & 3 \times 24=72 \end{aligned}$	Use addition to complete multiplications of 2-digit numbers by a 1-digit number. $\begin{aligned} & 4 \times 13=? \\ & 4 \times 3=12 \\ & 10=40 \\ & 12+40=52 \\ & 4 \times 13=52 \end{aligned}$
Multiplying a 2-digit number by a 1-digit number,	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $3 \times 24=?$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10s for 100s. $4 \times 23=?$	Children may write calculations in expanded column form, but must understand the link with place value and exchange.

expanded column method	$\begin{aligned} & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	$4 \times 23=92$ $\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \\ 5 \times 20 & =100 \\ 5 \times 23 & =115 \end{aligned}$	Children are encouraged to write the expanded parts of the calculation separately. $\begin{cases}5 \times 28=? \\ \frac{T 0}{28} & \\ \times \quad 5 & \\ \hline \frac{50}{100} & 5 \times 8 \\ \frac{140}{140}\end{cases}$
Year 3 Division			
Using timestables knowledge to divide	Use knowledge of known times-tables to calculate divisions. 24 divided into groups of 8 . There are 3 groups of 8 .	Use knowledge of known times-tables to calculate divisions. $48 \div 4=12$ 48 divided into groups of 4. There are 12 groups. $\begin{aligned} & 4 \times 12=48 \\ & 48 \div 4=12 \end{aligned}$	Use knowledge of known times-tables to calculate divisions. I need to work out 30 shared between 5. I know that $6 \times 5=30$ so I know that $30 \div 5=6$. A bar model may represent the relationship between sharing and grouping. $\begin{aligned} & 24 \div 4=6 \\ & 24 \div 6=4 \end{aligned}$ Children understand how division is related to both repeated subtraction and repeated addition.

			$24 \div 8=3$ $32 \div 8=4$
Understan ding remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. \|IIIIIIIIIII $\square \square \square \mid$ There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder.	Use images to explain remainders. $22 \div 5=4 \text { remainder } 2$	Understand that the remainder is what cannot be shared equally from a set. $22 \div 5=?$ $\begin{aligned} & 3 \times 5=15 \\ & 4 \times 5=20 \end{aligned}$ $5 \times 5=25 \ldots$ this is larger than 22 So, $22 \div 5=4$ remainder 2
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising. Make 6 ones divided by 3. Now make 6 tens divided by 3. What is the same? What is different?	Divide multiples of 10 by unitising. 12 tens shared into 3 equal groups. 4 tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=?$ 180 is 18 tens. 18 divided by 3 is 6 . 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$
2-digit number divided by 1-digit number, no remainders	Children explore dividing 2digit numbers by using place value equipment. $48 \div 2=?$ First divide the 10 s.	Children explore which partitions support particular divisions. I need to partition 42 differently to divide by 3.	Children partition a number into 10 s and $1 s$ to divide where appropriate. $\begin{aligned} 60 \div 2 & =30 \\ 8 \div 2 & =4 \\ 30+4 & =34 \\ 68 \div 2 & =34 \end{aligned}$ Children partition flexibly to divide where appropriate.

	Then divide the 1 s ． ロロロロ ロロ日ロ	$\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	$\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \end{aligned}$ $\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2－digit number divided by 1－digit number， with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups． There are two groups of 14 and 1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ \square	Partition to divide， understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ $17 \div 5=3$ remainder 2 $67 \div 5=13$ remainder 2 There are 13 children in each line and 2 children left out．

Helping your child with Science and the Foundation Subjects

Your child will study science and a number of foundation subjects throughout the year. Foundation subjects differ to the core subjects of: English, Maths and Science which are explored in further detail.

Even though foundation subjects are not explored as thoroughly, they are still important because they introduce pupils to a wide variety of skills and knowledge. Foundation subjects also give a taster to students on what they enjoy and excel at doing to give them a clear idea on what to progress further in their education.

Below are some Knowledge Organisers which will help you understand what we will be covering in the subjects mentioned above. A Knowledge Organiser (KO) sets out in detail what we want children to know by the end of the topic. We expect the majority of children to be able to recall all of the information on the KO by the end of the unit of work. During their topic the children will take part in regular quizzes, that help stretch their long-term memory and develop their recall of key information.

We ask that parents read through these Knowledge Organisers at home with their children. It is also useful for children to go back to previous Knowledge Organisers and revise these so that the information from previous learning is not forgotten.

We are developing knowledge organisers across the curriculum but for now, can share the following in science and humanities

Science: Term 1a

Science: Term 1b

Science: Term 2a

Science: Term 2b

Key Vocatilary	
light	A form of energy that trovels in a wave from a source
light source	An object that makes its own light.
dark	Dark is the absence of light.
refletion	The process where light hits the surface of an object and bounces back into our eyes.
mfleat	To bounce off
refletive	A word to describe something which refluets light well.
ray	Waves of light are called light rays. They can also be called beams.

Science: Term 3a

Animals Including Humans	
Key Vocabulary	
healthy	in a good physical and mental condition
nutrients	substances that living things need to stay alive and healthy
enersy	strength to be able to move and grew
nturuted fots	types of fats, considered to be less healthy, that should only be eaten in small amounts
unnaturated fats	fats that give you energy, vitamins and minerals
- Living things need food to grow and to be strong and healthy. - Plants can make their own food, but animals cannot. - To stay healthy, humans need to exercise, eat a healthy diet and be hygienic. - Animals, including humans, need food, water and air to stay alive.	

Science: Term 3b

Scientists and Inver		Scientists a	Inventors	Year 3
Key Vocabulary		Key Vocabulary		Fossils
Sir Joseph Banks	Banks introduced 80 species of plants, including the eucalyptus and the banksia, which is named after him.	seismology	The study of earthquakes, including how they happen and how to measure them.	Sedimentary rocks are formed by small particles of other rocks, along with minerals and plants, being squashed over many years to form a solid layer of rock Over time, this process is repeated and forms lots of layers in the rock. Fossils ore the remains of plants and animals that died as these layers were being formed and were preserved in the rock
David Douglas	The Douglas fir tree is named after this botanist. He also introduced pines and the flowering currant to Britain.	geology	The study of the earth and what it is made of.	
Jeanne Baret	Baret introduced 70 plants to Europe, including the bougainvillea.	magma	Hot molten rock found deep below the earth's surface, which	The Earth's core The earth's core is made up of solid iron and nickel and it is as hot as the surface of the sun. The core is hot enough to melt rock, which is then known as magma.
Tom Hart Dyke	This plant hunter hunts rare plants such as orchids.		flows out of a volcano as lava.	
Marie Curie	Marie Curie was a famous scientist who developed the use of x-roys, which meant that a lot more patients could be correctly diagnosed and treated.	Concave and convex mirrors reflect light differently to flat mirrors because the bend in the mirror causes the ray of light to reflect at different angles. Concave mirrors bulge inwards making the reflection appear larger. A car wing mirror		
George Washington Carver	George came up with more than 100 uses of a peanut so farmers could sell these plants at a higher price. The uses of peanuts included paints, face creams, plastics and medicines.			
william Smith	William studied geology and would study the pattern of fossils. He realised that he could tell the age of a rock by looking at fossils.	is a convex mirror which makes objects appear smaller so you can see them and more		Bones are used for supporting our bodies, protecting our organs and allowing our limbs to move. X-rays are electromagnetic radiations that can pass through opaque materials and enable us to see images of things inside our bodies, such as bones, teeth and joints.
Inge Lehmann	Inge was a seismologist and looked at the waves of energy caused by earthquakes. She concluded that the earth has a solid core at the centre.			

Humanities: Term 1a

Humanities: Term 1b

Humanities: Term 2a

Ancien		LK52	Ancient Egypt			LKS2
Key Vocabulary		Timeline	Key Vocabulary		Tutankhamun's Tomb	
BC	Used to show that a date is before the year O. This is counted backwards, so 200 BC is before 100 BC .		Ra	Sun god, lord of the gods. Sailed his boat through the sky during the day and through the underworld at night.		
ad	Used to show that a date is after the year 0 . This is counted forwards, so AD 100 is before AD 200.	$\begin{aligned} & \text { Maya Civilisation } \\ & \text { Anglo-Saxon Britain } \rightarrow \end{aligned}$	Amun	Created all things. Usually invisible unless mixed with another god, e.g		
irrigation	A system of canals or channels Egyptians dug to supply water to grow crops over a larger area than the water would reach naturally.	Writing hierogyphs were writer by eribes, who had togo to a special chool to cearn how to wite Almot all scribes were men, ath ought there is some endence of fenale dodetors being obice to read hier og typhs in medical text:				
			Hons	God of the sky. Pharaol were believed to be a god-like, living version of Horus.	Embalming and Mummification	Tutankhamun Facts
silt	Fine particles of soil, clay or sand carried and left by water.		Thoth	God of wisdom. Believed to have invented hieroglyphics and to keep a record of all knowledge.		
Hieroglyphics	A system of writing that used pictures and symbols (hieroglyphs) instead of letters.'	Hieroglyphs were used for religious texts and inscriptions on statues and tombs. They were also used for counting crops and animals so that the right taxes could be taken.	Mo	Goddess of truth. Pharaohs promised to follow Ma'at and be fair and honest.		BC to 1323 BC Known as the 'boy king' as he became pharaph
cartouche	An oval shape in which the names of kings and queens were often written in hieroglyphics to show that they were special.	The Rosetta Stone, discovered in 1799, was written in hieroglyphs and two other languages, including ancient Greek, which linguists (language experts) could still read. Linguists translated the hieroglyphs by comparing the languages. It took 20 years to translate all the text into modern language.	tis	to folow Mare and be fair and honest,	4. Cover the body in natron salt and leave it to dry for 40 days.	as he became pharaoh aged only 9
			Osiris	God of the dead	5. Remove the natron salt and pact the body	
pharsoh	show that they were special. A ruler of ancient Egypt.		Hathor	Goddess of love, music and dance.		
The Nile			Anubis	God of mummification. Weighed the hearts of the dead against Madr feather. If your heart was lighter, you would live forever.	7. Wrap the body in linen fabric, adding amulets and a Book of the Dead. 8. Place the mummy in a sarcophagus (decorated coffin).	- Tomb contained over 3000 treasures - Historians believe Tutankhamun died suddenly as the tomb was finished hastily.
The river Nile was essential to life in ancient Egypt. Every year, it flooded, leaving behind a black silt that enriched the soil for growing crops. The river was also used to irrigate fields in other areas.						
Most people lived along and around the Nile. This is still true in Egypt today. The river was used for water, fishing and trade. Mud from the river was used for bricks and papyrus plants were used to make paper:			Sek	Goddess of war. fire end medicine.		

Humanities: Term 2b

Humanities: Term 3a

Humanities: Term 3b

Staying Fit and Healthy

We encourage our pupils to develop healthy habits and stay fit. Here are some tips

Healthy Lunchboxes

A Guide for Parents

NHS guidelines suggest that a balanced lunchbox will contain something from each of the following groups:

- a starchy food such as bread, pasta or rice
- a protein source such as meat, fish, egg or beans
- a source of calcium such as yoghurt, cheese or milk
- fresh vegetables or salad
- fruit (including fresh fruit juice and dried fruit)

Make fruit fun and easy to eat by chopping it into small pieces and including a spoon. You can stop fruit such as apples and bananas from going brown by tossing them in a little water mixed with lemon juice and storing in an airtight container. You can use cookie cutters on fruit that can be cut into larger slices, such as melon or pineapple.

Try not to include foods high in fat and sugar on a daily basis. Make healthy swaps, such as crunchy carrot sticks instead of crisps, or a fruity yoghurt instead of a cake.

Don't forget your leftovers. If you've had a pasta meal, for example, the leftovers can quickly be turned into a nutritious pasta salad with the addition of a few chopped fresh vegetables. Leftovers from the Sunday roast also make fantastic sandwich fillings.

Chiller packs are readily available at the supermarket - pop a couple in the freezer so you always have one ready to slip into the lunchbox to keep things cool and fresh. Alternatively, you could freeze juice boxes and pop one of those in the box - by lunchtime it will have defrosted, all the while keeping the lunch fresh.

Reduce your use of single-use plastics by avoiding plastic spoons and drinks with straws, and using foil instead of plastic wrap. There are lots of reusable plastic food containers available now and it's also more cost-effective to buy larger pots of foods such as yoghurt and decant a portion into a reusable container.

Get your kids involved in making packed lunches - even the youngest can have a go at buttering a piece of bread and adding a filling. Set up a production line and you'll be surprised how quickly the lunches get done!

Plan a week's lunches in advance - try using this handy Weekly Lunchbox Planner.

You can make sandwiches more interesting by using different types of breads - try tortilla wraps, chapattis, pitta or bread flavoured with herbs, seeds or cheese. It's also fun to use cookie cutters to cut sandwiches into different shapes.

If your child is bored of sandwiches, try making a colourful pasta or rice salad, or send them with a dip such as hummus and a handful of breadsticks and veggie sticks.

Don't be tempted to include too much in your child's lunchbox, especially for younger children. Think about what you would serve them for a normal lunch at home. Often, children struggle to eat large amounts and they are always keen to finish quickly so that they can go outside to play with their friends!

Weekly Lunchbox Planning Record

Recommended Websites to Support Learning

https://www.oxfordowl.co.uk/
https://www.bbc.co.uk/bitesize
https://www.nationalgeographic.org/
https://www.dkfindout.com/uk/
https://www.booktrust.org.uk/
https://www.phonicsplay.co.uk/
https://ed.ted.com/

https://www.youtube.com/c/RuthMiskinTrainingEdu

Educational Apps

The following apps cover a range of activities and support learning in a number of subjects.

- Teach Your Monster to Read (For school-aged children): Covers the first two years of learning to read, from matching letters and sounds to enjoying little books, designed in collaboration with leading academics.
- Navigo Game (For school-aged children): Focuses on developing skills that underpin reading, including phonics, letters and sounds, designed by UCL Institute of Education and Fish in a Bottle.
- Fonetti (For school-aged children): The world's first 'Listening Bookshop' interacting with children by giving visual cues in real-time as they read aloud and highlighting where the most support is needed.
- Cambridge Science: Created by Cambridge University Press, Cambridge Science is an app using 360degree technology. You'll find 360-degree videos and photos grouped into categories such as: Earth, Water, Plants, Solar System and the Human Body. Visit stunning landscapes and breathtaking places, both real and digital. Learn lots of interesting facts.

School Subscriptions

We have a number of subscriptions we use for school use and for which parents and children have access. These are listed below including some brief guidelines on how to use them.

Classdojo = All Year Groups

ClassDojo is a school communication platform that teachers, pupils, and families use every day to build close-knit communities by sharing what's being learned in the classroom home through photos, videos, and messages.
To login to Classdojo, visit www.classdojo.com and sign in as a parent. If you are new to the school, you will need to be 'connected' to your child's class. We will provide instructions on how this is done.

Active Learn = All Year Groups

Your child's teacher will often set work on Active Learn for Maths.
Visit: www.activelearnprimary.co.uk and log in with the details provided by your teacher.

School Jam = Reception, Year 1 and 2

Maths Homework and tasks are allocated on School Jam for child in years 1 and 2. School Jam is accessed as a mobile app
School Jam on the App Store (Apple devices):
https://apps.apple.com/gb/app/schooljam/id1447069305
School Jam on the Play Store (Android devices):
https://play.google.com/store/apps/details?id=com .pearson.android. parentalengagement\&hl=en GB\& $\mathrm{gl}=\mathrm{US}$

Read, Write, Inc = Years 2, 3, 4, 5 and 6

BeadWriterno Spelling

Using a proven approach underpinned by phonics, fast-paced lessons and an online subscription, Read Write Inc. Spelling prepares children for the higher demands of the statutory spelling assessments in England. To access your learning platform, please visit:
https://www.oxfordowl.co.uk/login?activetab=students

Ensure you have selected the 'Student' tab

Century = Years 3, 4, 5 and 6

CENTURY

Century is for children in years 3-6. Homework is set on Century for English, Maths and Science.
Additionally, children can use Century to continue learning as the software uses artificial intelligence to allocate work according to the child's abilities.
Visit: app.century.tech/login and user your
username and password to login

Pickatale = All Year Groups

Pickatale

We use Pickatale to further re-enforce reading. This is open to all year groups.
Download the app and use your username and password to login

Apple Users:

https://apps.apple.com/gb/app/pickataleschool/id1533803381

Android Users:

https://play.google.com/store/apps/details?id=com .Pickatale.PFS\&hl=en GB\&gl=US

